Tabula Documentation
Tabula HomeCommunity
  • 👋Introduction to Tabula
  • Getting Started
    • Product Updates
    • Getting Started
      • Installation and Login
      • Beginner's Guide
    • FAQ
  • Product overview
    • Home Page
    • Exploring Data
      • Data Catalog
      • Exploring Datasets
      • Statistics Panel
    • Designing Flows
      • Creating Flows
      • Flow Designer Guide
        • Working with Canvas
        • Using Groups
        • Working with Table
      • Managing Flows
      • Sharing Flows
      • Demo: Building a Simple Flow
    • Executing Flows
      • Running Flows
      • Jobs overview
    • Building Reports
      • Designing Reports
      • Running Reports
      • Reports Page
    • Connecting Data
  • Integrations
    • Enrichments
      • How to add your API key in Tabula
      • List of Supported Queries
      • Enrichment Providers
        • AnymailFinder
        • Apollo
          • How to find Apollo API key
          • Enrich person by LinkedIn
          • Enrich company by domain
        • Bounceban
        • Bouncer
        • Bouncify
        • CaptainVerify
        • Cleanify
        • Clearout
        • CompanyEnrich
        • ContactOut
          • How to find ContactOut API key
          • Enrich person by LinkedIn
          • Enrich person by email
        • Discolike
        • TheCompaniesAPI
        • Findymail
        • Emailable
        • EmailListVerify
        • Enrichley
        • Heybounce
        • Hunter
        • Kickbox
        • Mails
        • MailChecker
        • MillionVerifier
        • NeverBounce
        • Nubela (Proxycurl)
        • PeopleDataLabs
        • Prospeo
        • ZeroBounce
        • ReverseContact
          • How to find Reverse Contact API key
          • Enrich person by LinkedIn
          • Enrich person and company by email
          • Enrich company by domain
          • Enrich company by LinkedIn
        • UpLead
    • Data Sources
      • Configuring Fivetran Integration
    • Data Storages
      • PostgreSQL
      • Snowflake
      • BigQuery
      • ClickHouse
  • Data Transformation
    • Transforms
      • Source
      • New Empty Table
      • Output
      • Chart
      • Enrichment
      • New Column
      • If...Then
      • Rolling Functions
      • Column Type
      • Columns Edit
      • Filter
      • Remove Duplicates
      • Sort
      • Find and Replace Text
      • Split Column
      • Extract Text
      • Match Text
      • Join
      • Union
      • Group By
      • Pivot
      • Unpivot
      • To JSON
      • From JSON
      • API Call
      • AI Column
      • AI Table
    • Formulas
      • What are Formulas?
      • Math Functions
        • Abs
        • Ceiling
        • Exp
        • Floor
        • IsEven
        • IsOdd
        • Ln
        • Log
        • Log10
        • Mod
        • Pi
        • Power
        • Quotient
        • Round
        • RoundDown
        • RoundUp
        • Sign
        • Sqrt
        • Truncate
      • Trigonometric Functions
        • Acos
        • Asin
        • Atan
        • Atan2
        • Cos
        • Cot
        • Degrees
        • Radians
        • Sin
        • Tan
      • String Functions
        • Compare
        • Concat
        • Contains
        • In
        • CountMatches
        • CountMatchesRegexp
        • EndsWith
        • EndsWithRegexp
        • Extract
        • FindMatchOfString
        • FindMatchOfRegexp
        • FindMatchesOfString
        • FindMatchesOfRegexp
        • Left
        • Length
        • Lower
        • Matches
        • Pad
        • ProperCase
        • RemoveSymbols
        • RemoveWhitespaces
        • Repeat
        • Replace
        • ReplaceRegexp
        • Reverse
        • Right
        • Spaces
        • Split
        • SplitRegexp
        • StartsWith
        • StartsWithRegexp
        • Stuff
        • Substring
        • SubstringDelimiter
        • SubstringRegexpDelimiter
        • Trim
        • Upper
      • Date & Time Functions
        • Date
        • DateAdd
        • DateAdd2
        • DateDiff
        • DateDiff2
        • DateFromParts
        • DateTime
        • DateTimeFromParts
        • DateTrunc
        • DayName
        • DayOfMonth
        • DayOfWeek
        • DayOfYear
        • Hour
        • Minute
        • Month
        • MonthName
        • Now
        • Quarter
        • Second
        • Time
        • TimeFromParts
        • Today
        • Week
        • Year
      • Aggregate Functions
        • Any
        • AnyIf
        • Array
        • ArrayIf
        • Avg
        • AvgIf
        • AvgInRow
        • Count
        • CountA
        • CountIf
        • CountUnique
        • Max
        • MaxIf
        • MaxInRow
        • Median
        • MedianIf
        • Min
        • MinIf
        • MinInRow
        • Mode
        • ModeIf
        • Percentile
        • Quartile
        • StdDev
        • StdDevIf
        • Sum
        • SumIf
        • SumProduct
        • Variance
        • VarianceIf
      • Conversion Functions
        • ToArray
        • ArrayToString
        • ToBoolean
        • ToDate
        • ToDateTime
        • ToDecimal
        • ToInteger
        • ToObject
        • ToTime
        • ToString
      • Misc Functions
        • At
        • IsMissing
        • RowNumber
        • Random
        • If
        • Coalesce
        • True
        • False
        • Null
        • $target
      • Window Functions
      • Custom Functions
      • Data Types
      • Supported Date Parts
      • Regex: List of Tokes
  • Pricing & Billing
    • Plans, Subscriptions, and Credits
    • Tabula for Education
  • Tutorials
    • Tabula Use Cases
    • Merge Columns
    • Join Types
    • Union Introduction
    • Window Functions
    • What is Unpivot?
    • JSON Format Tutorial
    • Using Regex
Powered by GitBook
On this page

Was this helpful?

  1. Product overview

Designing Flows

PreviousStatistics PanelNextCreating Flows

Last updated 1 year ago

Was this helpful?

Overview

Visual data flows are a graphical representation of data transformation processes using a series of interconnected nodes. Each node in the pipeline represents a specific data transformation action or operation, such as filtering, sorting, or aggregating data.

The purpose of visual data pipelines is to provide a user-friendly, intuitive way to design, configure, and understand complex data processing tasks without the need for extensive programming knowledge.

Key aspects of visual data pipelines

Nodes. Nodes are the fundamental building blocks of a visual data pipeline. Each node serves a specific purpose and encapsulates a particular data transformation operation, such as filtering rows based on specific conditions, sorting columns, or adding new columns using expressions.

Connections. In a visual data pipeline, nodes are connected to define the data flow through the transformation process. The output of one node becomes the input of the next node in the sequence, allowing you to chain together multiple transformations to achieve the desired result.

Visual Interface. The primary advantage of a visual data pipeline is its user-friendly graphical interface. You can add nodes on a canvas with one click, connect them in the desired order, and configure the settings for each node using a property grid.

Real-time Preview. Our data pipelines include a real-time preview feature that allows you to see the impact of their transformations on a sample of the dataset instantly. This helps you understand the results of their configuration choices and adjust settings as necessary.