Tabula Documentation
Tabula HomeCommunity
  • 👋Introduction to Tabula
  • Getting Started
    • Product Updates
    • Getting Started
      • Installation and Login
      • Beginner's Guide
    • FAQ
  • Product overview
    • Home Page
    • Exploring Data
      • Data Catalog
      • Exploring Datasets
      • Statistics Panel
    • Designing Flows
      • Creating Flows
      • Flow Designer Guide
        • Working with Canvas
        • Using Groups
        • Working with Table
      • Managing Flows
      • Sharing Flows
      • Demo: Building a Simple Flow
    • Executing Flows
      • Running Flows
      • Jobs overview
    • Building Reports
      • Designing Reports
      • Running Reports
      • Reports Page
    • Connecting Data
  • Integrations
    • Enrichments
      • How to add your API key in Tabula
      • List of Supported Queries
      • Enrichment Providers
        • AnymailFinder
        • Apollo
          • How to find Apollo API key
          • Enrich person by LinkedIn
          • Enrich company by domain
        • Bounceban
        • Bouncer
        • Bouncify
        • CaptainVerify
        • Cleanify
        • Clearout
        • CompanyEnrich
        • ContactOut
          • How to find ContactOut API key
          • Enrich person by LinkedIn
          • Enrich person by email
        • Discolike
        • TheCompaniesAPI
        • Findymail
        • Emailable
        • EmailListVerify
        • Enrichley
        • Heybounce
        • Hunter
        • Kickbox
        • Mails
        • MailChecker
        • MillionVerifier
        • NeverBounce
        • Nubela (Proxycurl)
        • PeopleDataLabs
        • Prospeo
        • ZeroBounce
        • ReverseContact
          • How to find Reverse Contact API key
          • Enrich person by LinkedIn
          • Enrich person and company by email
          • Enrich company by domain
          • Enrich company by LinkedIn
        • UpLead
    • Data Sources
      • Configuring Fivetran Integration
    • Data Storages
      • PostgreSQL
      • Snowflake
      • BigQuery
      • ClickHouse
  • Data Transformation
    • Transforms
      • Source
      • New Empty Table
      • Output
      • Chart
      • Enrichment
      • New Column
      • If...Then
      • Rolling Functions
      • Column Type
      • Columns Edit
      • Filter
      • Remove Duplicates
      • Sort
      • Find and Replace Text
      • Split Column
      • Extract Text
      • Match Text
      • Join
      • Union
      • Group By
      • Pivot
      • Unpivot
      • To JSON
      • From JSON
      • API Call
      • AI Column
      • AI Table
    • Formulas
      • What are Formulas?
      • Math Functions
        • Abs
        • Ceiling
        • Exp
        • Floor
        • IsEven
        • IsOdd
        • Ln
        • Log
        • Log10
        • Mod
        • Pi
        • Power
        • Quotient
        • Round
        • RoundDown
        • RoundUp
        • Sign
        • Sqrt
        • Truncate
      • Trigonometric Functions
        • Acos
        • Asin
        • Atan
        • Atan2
        • Cos
        • Cot
        • Degrees
        • Radians
        • Sin
        • Tan
      • String Functions
        • Compare
        • Concat
        • Contains
        • In
        • CountMatches
        • CountMatchesRegexp
        • EndsWith
        • EndsWithRegexp
        • Extract
        • FindMatchOfString
        • FindMatchOfRegexp
        • FindMatchesOfString
        • FindMatchesOfRegexp
        • Left
        • Length
        • Lower
        • Matches
        • Pad
        • ProperCase
        • RemoveSymbols
        • RemoveWhitespaces
        • Repeat
        • Replace
        • ReplaceRegexp
        • Reverse
        • Right
        • Spaces
        • Split
        • SplitRegexp
        • StartsWith
        • StartsWithRegexp
        • Stuff
        • Substring
        • SubstringDelimiter
        • SubstringRegexpDelimiter
        • Trim
        • Upper
      • Date & Time Functions
        • Date
        • DateAdd
        • DateAdd2
        • DateDiff
        • DateDiff2
        • DateFromParts
        • DateTime
        • DateTimeFromParts
        • DateTrunc
        • DayName
        • DayOfMonth
        • DayOfWeek
        • DayOfYear
        • Hour
        • Minute
        • Month
        • MonthName
        • Now
        • Quarter
        • Second
        • Time
        • TimeFromParts
        • Today
        • Week
        • Year
      • Aggregate Functions
        • Any
        • AnyIf
        • Array
        • ArrayIf
        • Avg
        • AvgIf
        • AvgInRow
        • Count
        • CountA
        • CountIf
        • CountUnique
        • Max
        • MaxIf
        • MaxInRow
        • Median
        • MedianIf
        • Min
        • MinIf
        • MinInRow
        • Mode
        • ModeIf
        • Percentile
        • Quartile
        • StdDev
        • StdDevIf
        • Sum
        • SumIf
        • SumProduct
        • Variance
        • VarianceIf
      • Conversion Functions
        • ToArray
        • ArrayToString
        • ToBoolean
        • ToDate
        • ToDateTime
        • ToDecimal
        • ToInteger
        • ToObject
        • ToTime
        • ToString
      • Misc Functions
        • At
        • IsMissing
        • RowNumber
        • Random
        • If
        • Coalesce
        • True
        • False
        • Null
        • $target
      • Window Functions
      • Custom Functions
      • Data Types
      • Supported Date Parts
      • Regex: List of Tokes
  • Pricing & Billing
    • Plans, Subscriptions, and Credits
    • Tabula for Education
  • Tutorials
    • Tabula Use Cases
    • Merge Columns
    • Join Types
    • Union Introduction
    • Window Functions
    • What is Unpivot?
    • JSON Format Tutorial
    • Using Regex
Powered by GitBook
On this page
  • Introduction
  • Accessing the job page
  • Understanding the job page layout
  • User flow for monitoring a job
  • Tips for effective job management

Was this helpful?

  1. Product overview
  2. Executing Flows

Jobs overview

PreviousRunning FlowsNextBuilding Reports

Last updated 1 year ago

Was this helpful?

Introduction

The job page provides a comprehensive view of each job, including scheduling options, a list of outputs from the last run, and a detailed history of all runs.

Accessing the job page

From the data flow designer

In the data flow designer, once your data flow is ready, click the Run button. This action will either create a new job if it doesn't exist or initiate a run instance for an existing job. When job finishes working, you will see a notification and can access the job's result directly from the notification or by clicking the Job button on the toolbar.

Direct access

You can access existing jobs by navigating to the Jobs section from the Home Screen.

Note. You cannot create a new job directly from the Job page. Jobs are only created through the data flow designer.

Understanding the job page layout

Scheduling

Customize when and how often your job runs. This section allows you to configure recurring schedules or one-time executions.

Outputs of the last run

This area displays the results from the most recent execution of the job. Outputs can include reports, charts, or datasets. Click on an output to get a quick preview.

Run monitor

Here, you see a chronological list of every instance the job has run. You can drill down for each run to view detailed information such as status, outputs, and logs.

User flow for monitoring a job

Start a job. In the data flow designer, click the Run button to initiate a job or a new run of an existing job.

Job creation. If the job doesn't exist, it will be automatically created.

Monitoring the job. Once the job starts, you can go to the Job page.

  • View the status of the current run.

  • Check the outputs from the last run.

  • Look through the history of all runs.

Tips for effective job management

Regularly check schedules. Ensure your jobs are running at the intended times.

Preview outputs frequently. Regular previews help in catching errors or anomalies early.

Review logs. In case of failures or unexpected results, logs are invaluable for diagnosing issues.

Update data flows as needed. Changes in data flows are reflected in subsequent job runs. Keep your flows updated for accurate results.